Галактика

Сознание Современного Человека
Текущее время: 10 дек 2018, 21:44

Часовой пояс: UTC + 3 часа




Начать новую тему Ответить на тему  [ Сообщений: 48 ]  На страницу Пред.  1, 2, 3, 4
Автор Сообщение
 Заголовок сообщения: Невозможное возможно
СообщениеДобавлено: 17 май 2011, 02:07 
Администратор
Аватара пользователя

Зарегистрирован: 22 май 2009, 00:24
Сообщения: 14637
Тахионы из будущего

Помимо «опережающих» волн из будущего (которые снова и снова доказывают свою полезность в квантовой теории), в квантовой теории существует еще одна необычная концепция, которая представляется столь же безумной, но, возможно, не столь полезной. Это гипотеза о тахионах, которые регулярно появляются в сериале «Звездный путь». Каждый раз, когда сценаристам «Звездного пути» требуется какой-нибудь новый вид энергии для некой магической операции, они привлекают тахионы.
Тахионы живут в странном мире, где все движется быстрее света. Теряя энергию, тахионы начинают двигаться быстрее — что, естественно, противоречит здравому смыслу. Мало того, тахион, полностью лишившийся энергии, движется с бесконечной скоростью. И наоборот, приобретая энергию, тахионы замедляются, пока не достигнут скорости света.
Особенно странными тахионы делает тот факт, что они обладают мнимой массой. (Говоря «мнимой», мы имеем в виду, что их масса умножается на корень квадратный из минус единицы, или i.) Если взять знаменитые уравнения Эйнштейна и заменить в них m на im, произойдет чудо. Скорость частиц внезапно станет больше скорости света.
Из-за этого возникают странные ситуации. Когда тахион летит сквозь вещество, он теряет энергию, поскольку сталкивается с атомами. Но, теряя энергию, он ускоряется, отчего столкновения только усиливаются и происходят чаще. По идее эти столкновения должны вызывать дальнейшую потерю энергии и, следовательно, дальнейшее ускорение. Возникает замкнутый круг, и тахион сам по себе, естественным образом, набирает бесконечную скорость!
(Тахионы отличаются и от антивещества, и от отрицательного вещества. Антивещество обладает положительной энергией, движется медленнее света и может быть получено в наших ускорителях частиц. Согласно теории, антивещество подчиняется закону тяготения и, как положено, падает вниз. Антивещество соответствует обычному веществу, движущемуся назад во времени. Отрицательное вещество обладает отрицательной энергией и тоже движется медленнее света, но под воздействием тяготения падает вверх, т. е. прочь от притягивающего тела из обычного вещества. Отрицательное вещество в лаборатории еще никто не видел. В теории в больших количествах оно может служить топливом для машины времени. Тахионы движутся быстрее света и обладают мнимой массой; как они ведут себя под воздействием силы тяжести, неясно. Их пока тоже не удалось получить в лаборатории.)
Тахионы, конечно, частицы очень странные, но физики серьезно их изучают; можно назвать, например, покойного Джеральда Фейнберга из Колумбийского университета и Джорджа Сударшана из Университета Техаса в Остине. Проблема в том, что никто никогда не видел тахиона в лаборатории. Надежным экспериментальным свидетельством существования тахионов было бы нарушение причинности. Фейнберг даже предлагал физикам исследовать лазерный луч до включения лазера. Если тахионы существуют, то не исключено, что свет лазерного луча можно обнаружить даже раньше, чем аппарат будет включен.
В научной фантастике тахионы регулярно используются как средство отправки сообщения в прошлое, предкам. Но из физики явления совершенно непонятно, возможно ли такое хотя бы теоретически. Фейнберг, к примеру, считал, что эмиссия тахионов, движущихся во времени вперед, точно соответствует поглощению тахионов с отрицательной энергией, движущихся во времени назад (аналогично положению с антивеществом), поэтому никакого нарушения причинности не происходит.
Если оставить фантастику в стороне, то в настоящий момент физики считают, что тахионы, возможно, существовали в момент Большого взрыва, нарушая причинность, но теперь их больше не существует. Более того, очень может быть, что тахионы сыграли существенную роль в том, что Вселенная вообще взорвалась. В этом смысле они играют важную роль в некоторых теориях Большого взрыва.
У тахионов есть еще одно забавное свойство. При введении в любую теорию они дестабилизируют «вакуум», т. е. самое низкоэнергетическое состояние системы. Если в системе присутствуют тахионы, значит, она находится в состоянии «ложного вакуума», а следовательно, нестабильна и будет разрушаться до состояния истинного вакуума.
Представьте себе плотину, которая удерживает воду в озере. Это и есть «ложный вакуум». Хотя плотина представляется вполне надежной, существует состояние с еще более низкой энергией. И если в плотине появляется трещина, вода начинает стремительно вытекать из озера и стекать на уровень моря — тогда-то система и достигает состояния истинного вакуума.
Точно так же считается, что Вселенная до Большого взрыва существовала в состоянии ложного вакуума, где были тахионы. Но их присутствие означало, что это не самое низкоэнергетическое состояние системы, а потому система нестабильна. Затем в ткани пространства-времени появилась крошечная «прореха», представляющая истинный вакуум. Прореха начала увеличиваться, появился пузырь. Вне пузыря тахионы по-прежнему существовали, но внутри их не было. С ростом пузыря появилась та Вселенная, которую мы знаем, — Вселенная без тахионов. Это и был Большой взрыв.
Одна из теорий, которую космологи воспринимают очень серьезно, состоит в том, что первоначальный процесс инфляции начал один-единственный тахион, известный как «инфлятон». Как мы уже упоминали, теория инфляционной Вселенной утверждает, что она возникла как крошечный пузырек пространства-времени, переживший сверхбыстрый период расширения (инфляции). Физики считают, что первоначально Вселенная существовала в состоянии ложного вакуума, где инфляционным полем был тахион. Но присутствие тахиона дестабилизировало вакуум, и образовались крошечные пузырьки. Внутри одного из этих пузырьков инфляционное поле оказалось в состоянии истинного вакуума. Этот пузырек начал стремительно раздуваться, пока не превратился в нашу Вселенную. Внутри нашего пузыря-вселенной инфляция исчезла, поэтому ее и не удается зарегистрировать в нашей Вселенной. Получается, что тахионы представляют собой причудливое квантовое состояние, в котором объекты движутся быстрее света и, быть может, даже нарушается причинность. Но тахионы давно исчезли, дав при этом, возможно, жизнь самой Вселенной.
Наверное, все это похоже на досужие рассуждения, которые невозможно проверить. Но первый эксперимент по проверке теории ложного вакуума начинается в 2008 г. с пуском в Швейцарии, в окрестностях Женевы, Большого адронного коллайдера. Одна из основных задач БАК — обнаружение бозонов Хиггса, последней до сих пор не найденной частицы Стандартной модели, последней детали научной головоломки. (Частица Хиггса так важна и так неуловима, что нобелевский лауреат Леон Ледерман назвал ее «частицей-богом».)
Физики считают, что бозон Хиггса начал свое существование как тахион. В ложном вакууме ни одна из субатомных частиц не имела массы. Но присутствие тахиона дестабилизировало вакуум, и Вселенная перешла в новое состояние, к новому вакууму, в котором бозон Хиггса обернулся обычной частицей. После этого перехода — из состояния тахиона в состояние обычной частицы — субатомные частицы приобретают массу, которую мы сегодня измеряем в лаборатории. Таким образом, обнаружение бозона Хиггса не только поставит на место последнюю недостающую деталь Стандартной модели, но и подтвердит, что тахионное состояние когда-то существовало, но позже трансформировалось в обычную частицу.
Подведем итог. Ньютонова физика полностью отвергает возможность предвидения будущего. Железное правило причины и следствия никогда не нарушается. Квантовая теория допускает иные состояния вещества, такие как антивещество, которое соответствует обычному веществу, движущемуся назад во времени, но принцип причинности не нарушается. Более того, антивещество в квантовой теории необходимо для восстановления причинности. Тахионы на первый взгляд нарушают принцип причинности, но физики считают, что они исполнили свое предназначение — запустили механизм Большого взрыва и исчезли из нашей Вселенной.
Так что предвидение будущего, похоже, исключается, по крайней мере в обозримом будущем, а это значит, что его следует отнести к III классу невозможности. Если когда-нибудь удастся доказать при помощи воспроизводимых экспериментов, что предвидеть будущее все же можно, современную физику придется пересматривать до самого основания.


Вернуться к началу
 Профиль  
 
 Заголовок сообщения: Невозможное возможно
СообщениеДобавлено: 19 май 2011, 03:28 
Администратор
Аватара пользователя

Зарегистрирован: 22 май 2009, 00:24
Сообщения: 14637
Эпилог.

Будущее невозможного.

Не существует ничего достаточно крупного или достаточно безумного, что ни одно из миллиона технологических обществ не почувствовало бы себя обязанным сделать, - если, конечно, это физически возможно.
Фримен Дайсон

Судьба — это вопрос не случая, но выбора. Ее не следует дожидаться, следует идти к ней.
Уильям Дженнингс Брайан
Существуют ли истины, которые навсегда останутся недоступными для нас? Существуют ли кладези знаний, которые будут неподвластны даже продвинутой цивилизации? Из всех технологий, которые мы обсудили в этой книге, только вечный двигатель и предвидение будущего пришлось отнести к III классу невозможности. Существуют ли другие, столь же невозможные технологии?
В чистой математике полно теорем, доказывающих полную невозможность того или иного события. Простой пример: невозможно разделить угол натрое при помощи только циркуля и линейки; это доказано еще в 1837 г.
Даже в простых системах, таких как арифметика, существуют невозможные действия. Как я уже упоминал, невозможно доказать все истинные утверждения в арифметике в пределах постулатов самой арифметики. В ней всегда будут существовать истинные утверждения, которые можно доказать только в пределах более крупной системы, подсистемой которой является арифметика.
Итак, в математике существуют вещи невозможные, но в физике очень опасно заявлять, что какое-то событие или действие абсолютно невозможно. Позвольте напомнить вам речь, которую произнес нобелевский лауреат Альберт Майкельсон в 1894 г. на церемонии открытия физической лаборатории Райерсона в Чикагском университете; Майкельсон заявил, что невозможно открыть какую бы то ни было новую физику: «Все самые важные фундаментальные законы и факты физической науки уже открыты и прочно утвердились; вероятность того, что их когда-нибудь в результате новых открытий сменят другие законы и факты, чрезвычайно мала... В будущем нам следует ожидать новых открытий лишь в шестом знаке после запятой».
Его замечания прозвучали буквально накануне величайших потрясений в истории науки — квантовой революции 1900 г. и открытия теории относительности в 1905 г. Дело в том, что события, которые мы сегодня считаем невозможными, нарушают известные нам законы физики — но ведь законы эти могут меняться.
В 1825 г. великий французский философ Огюст Конт в своем «Курсе философии» заявил, что наука никогда не сможет определить, из чего сделаны звезды. В то время это утверждение выглядело вполне резонным, ведь о природе звезд ничего не было известно. Ясно было, что находятся они очень далеко и добраться до них невозможно. Но всего через несколько лет после заявления Конта физики узнали (при помощи спектроскопии), что Солнце состоит из водорода. Более того, сегодня мы знаем, что путем анализа спектральных линий звезд, излучавших свет миллиарды лет назад, можно определить химический состав большей части Вселенной.
Конт бросил вызов научному миру, перечислив еще несколько «невозможных событий».
• Он утверждал, что «глубинная структура тел навсегда останется за пределами наших знаний». Другими словами, невозможно познать истинную природу материи.
• Он считал, что математика неприложима к биологии и химии. Он утверждал, что эти науки невозможно низвести до уровня математики.
• Он считал, что изучение небесных тел не может принести человечеству реальной пользы.
В XIX в. у философа были все основания для подобных заявлений, ведь фундаментальная наука тогда только зарождалась и мало что знала. Почти ничего не было известно о тайнах вещества и жизни. Но сегодня у нас есть атомная теория, открывшая новые просторы для научных исследований и изучения структуры вещества. Мы знаем о ДНК и квантовой теории, раскрывшей нам тайны жизни и химии. Мы знаем также о прилетающих из космоса метеоритах, которые не только оказали влияние на развитие жизни на Земле, но и, возможно, участвовали в ее зарождении.
Астроном Джон Барроу заметил: «Историки до сих пор обсуждают, не стали ли взгляды Конта одной из причин последовавшего вскоре упадка французской науки».
Математик Давид Гильберт, отвергая утверждения Конта, писал: «По-моему, подлинная причина того, что Конту не удалось найти ни одной действительно нерешаемои проблемы, заключается в том, что нерешаемых проблем не существует».
Но сегодня некоторые ученые пытаются составить новый список невозможных событий: мы никогда не узнаем, что происходило до Большого взрыва (или, скажем, что послужило его причиной); мы никогда не получим «теорию всего».
Физик Джон Уилер написал по поводу первого «невозможного» вопроса: «Двести лет назад можно было спросить у любого человека: "Сможем ли мы понять когда-нибудь, как возникла жизнь?" — и услышать в ответ: "Абсурд! Это невозможно!" Я примерно так же отношусь к вопросу "Поймем ли мы когда-нибудь, как возникла Вселенная?"».
Астроном Джон Барроу добавил: «Скорость света ограниченна, поэтому ограниченны и наши знания о структуре Вселенной. Мы не можем определить, конечна она или бесконечна, было ли у нее начало и будет ли конец, одинакова ли повсюду ее структура и вообще, в конце концов, упорядочение Вселенная или нет... На все принципиальные вопросы о природе Вселенной — от начала ее и до конца — оказывается, невозможно ответить»,
Барроу прав в том, что мы никогда не узнаем с абсолютной точностью подлинную природу Вселенной во всем ее великолепии. Но мы вполне способны отщипывать по кусочку от этих вечных неисчерпаемых вопросов и постепенно приближаться к истине. Утверждения о невозможности чего бы то ни было следует, вероятно, рассматривать не как абсолютные пределы нашего знания, а как вызов следующему поколению ученых. Эти пределы, подобно корочке пирога, возникают, чтобы быть разрушенными.
Эпоха до Большого взрыва
Что касается Большого взрыва, то в настоящий момент создается новое поколение приборов, которые, возможно, помогут нам разрешить некоторые вечные вопросы. Сегодня наши космические детекторы излучения регистрируют только микроволновое излучение, возникшее через 300 000 лет после Большого взрыва, когда сформировались первые атомы. Это излучение не в состоянии помочь нам разобраться в том, что было до этого, потому что излучение первоначального огненного шара было слишком горячим и случайным, чтобы из него можно было извлечь какую-нибудь полезную информацию.
Но не исключено, что при помощи анализа других типов излучения мы сможем подобраться к Большому взрыву чуть ближе. К примеру, массу интересной информации обещает нам изучение нейтрино. Нейтрино настолько неуловимы, что могут пролететь сквозь свинцовый шар размером с Солнечную систему, поэтому нейтринное излучение может рассказать нам о том, что происходило через несколько секунд после Большого взрыва.
Окончательно же разобраться в тайнах Большого взрыва нам, возможно, помогут «гравитационные волны» — волны, бегущие по ткани пространства-времени. Физик Роки Колб из Чикагского университета говорит: «Определив свойства нейтринного фона, мы сможем заглянуть в момент через одну секунду после Большого взрыва. Но гравитационные волны из зоны инфляции возникли во Вселенной через 10~35 секунд после взрыва».
Первым предсказал гравитационные волны Эйнштейн в 1916 г.; возможно, со временем они станут важнейшим инструментом астрономии. Обращаясь к истории, можно сказать, что с обузданием каждой новой формы излучения в астрономии начиналась новая эра. Сначала был только видимый свет, при помощи которого Галилей изучал Солнечную систему. Затем к нему добавились радиоволны, которые со временем позволили человеку заглянуть в центры галактик и обнаружить там черные дыры. Не исключено, что детекторы гравитационных волн раскроют для нас — ни много ни мало — тайны творения.
В некотором смысле гравитационные волны просто обязаны существовать. Чтобы убедиться в этом, рассмотрим старый как мир вопрос: что произойдет, если внезапно исчезнет Солнце? По Ньютону, мы почувствуем это немедленно. Земля мгновенно будет вышвырнута с орбиты и ввергнута во тьму. Дело в том, что закон всемирного тяготения Ньютона не принимает в расчет скорость взаимодействия, поэтому силы гравитации действуют мгновенно во всей Вселенной. Но, согласно Эйнштейну, ничто не может двигаться быстрее света, и информация об исчезновении Солнца достигнет Земли только через восемь минут. Другими словами, сферическая «ударная волна» гравитации выйдет из Солнца и лишь через некоторое время ударит по Земле. Вне сферической границы этой гравитационной волны будет казаться, что Солнце по-прежнему светит и находится на месте — ведь информация о его исчезновении еще не достигла Земли. Однако внутри сферы гравитационной волны Солнца уже не будет, потому что волна эта распространяется со скоростью света.
Еще один способ убедиться в том, что гравитационные волны должны существовать, — это представить себе очень большую простыню. Согласно Эйнштейну, пространство-время — это ткань, которую можно сворачивать или растягивать подобно простыне. Если схватить простыню за край и быстро потрясти, мы увидим, что по полотну побегут волны, или рябь, — причем побегут с определенной скоростью. Точно так же гравитационные волны можно уподобить ряби, бегущей по ткани пространства-времени.
Гравитационные волны принадлежат к самым стремительно развивающимся темам современной физики. В 2003 г. были введены в строй первые крупномасштабные детекторы гравитационных волн, получившие название LIGO (Laser Interferometer Gravitational Wave Observatory); эти детекторы имеют 4 км в длину и расположены в Хэнфорде, штат Вашингтон, и в Ливингстон-Пэриш, штат Луизиана. Ученые надеются, что детекторы LIGO, обошедшиеся нам в 365 млн долл., смогут зарегистрировать излучение от сталкивающихся нейтронных звезд и черных дыр.
Следующее крупное событие, вероятно, произойдет в 2015 г., когда начнется запуск спутников нового поколения, предназначенных для анализа гравитационного излучения в космосе с самого момента творения. Это совместный проект NASA и Европейского космического агентства; на околосолнечную орбиту предполагается запустить три спутника, которые вместе составят систему с красивым именем LISA (Laser Interferometer Space Antenna — космическая антенна с лазерным интерферометром). Эти спутники смогут регистрировать гравитационные волны, возникшие менее чем через одну триллионную долю секунды после Большого взрыва. Проходя через один из спутников, гравитационная волна Большого взрыва, до сих пор гуляющая по всей Вселенной, потревожит лазерные лучи; эти изменения будут зарегистрированы и измерены с максимально возможной точностью и дадут нам «картинку» самого момента творения.
По проекту LISA состоит из трех спутников, которые обращаются вокруг Солнца и образуют треугольник; они соединены друг с другом при помощи лазерных лучей длиной по 5 млн км и вместе образуют самый большой научный инструмент, когда-либо созданный человечеством. Эта система из трех аппаратов будет обращаться вокруг Солнца на расстоянии около 50 млн км от Земли.
Каждый спутник будет испускать лазерный луч мощностью всего полватта. Сравнивая лазерные лучи, пришедшие от двух других спутников, каждый из спутников построит соответствующую интерференционную картину. Если гравитационная волна вызовет возмущение лазерных лучей, интерференционная картина изменится — и спутники смогут зарегистрировать это изменение. (Гравитационная волна не потревожит сами спутники и не заставит их колебаться. Результатом ее воздействия станут искажения пространства между тремя спутниками.)
Хотя лазерные лучи будут чрезвычайно слабыми, они позволят добиться поразительной точности измерений. Система сможет регистрировать колебания до одной доли из миллиарда триллионов — это примерно соответствует сдвигу в 1/100 долю размера атома. Каждый из лазерных лучей сможет уловить гравитационную волну с расстояния в 9 млрд световых лет, что покрывает большую часть видимой Вселенной.
Потенциально чувствительности аппаратуры USA должно хватить для того, чтобы различить несколько сценариев событий до Большого взрыва. На сегодня одна самых «горячих» тем теоретической физики — расчет характеристик Вселенной до Большого взрыва. В настоящее время инфляционная теория достаточно хорошо объясняет, как развивалась Вселенная после того, как произошел Большой взрыв. Но эта теория не в состоянии объяснить, почему, собственно, этот взрыв произошел. Таким образом, цель — рассчитать при помощи различных приблизительных моделей эры «до Большого взрыва» параметры гравитационного излучения, которое должно бьшо возникнуть в момент самого взрыва. Каждая из теорий предсказывает свое. К примеру, излучение Большого взрыва, предсказанное теорией Большого всплеска, отличается от излучения, которое предсказывают некоторые инфляционные теории, и LISA, вполне возможно, сумеет исключить часть существующих на сегодня теорий. Очевидно, непосредственно проверить модели поведения Вселенной до Большого взрыва невозможно, поскольку для этого требуется понимать, как вела себя Вселенная до возникновения времени, но мы можем попытаться проверить их косвенно, ведь каждая из этих моделей предсказывает свой спектр излучения, возникающего после Большого взрыва.
Физик Кип Торн пишет: «Где-то между 2008 и 2030 гг. будут обнаружены гравитационные волны от сингулярности Большого взрыва. Это открытие послужит началом новой эры, которая продлится по крайней мере до 2050 г... Эти усилия раскроют тонкие детали и свойства сингулярности Большого взрыва и таким образом проверят, какая из версий теории струн представляет собой верную квантовую теорию гравитации».
Если LISA не сможет определиться с выбором одной из многих «довзрывных» теорий, это, возможно, удастся сделать ее преемнику — Наблюдателю Большого взрыва (Big Bang Observer, ВВО). Его запуск предварительно планируется на 2025 г. ВВО сможет просканировать всю Вселенную в поисках двойных систем, включающих нейтронные звезды и черные дыры массой менее тысячи масс Солнца. Но главная его цель — изучить гравитационные волны, возникшие во время инфляционной фазы Большого взрыва. В этом смысле можно сказать, что ВВО специально разработан для проверки предсказаний инфляционной теории Большого взрыва.
По устройству ВВО напоминает LISA. Он будет состоять из трех спутников, согласованно обращающихся по орбите вокруг Солнца и разделенных расстоянием 50 000 км (эти спутники будут находиться друг к другу гораздо ближе, чем спутники системы LISA). Каждый спутник сможет излучать лазерный луч мощностью 300 Вт. ВВО сможет регистрировать гравитационные волны с частотами, промежуточными между доступными для LIGO и LISA, и таким образом заполнит важный пробел. (LISA сможет регистрировать гравитационные волны с частотами от 10 до 3000 Гц, тогда как LIGO доступен диапазон от 10 мкГц до 10 мГц. ВВО сможет регистрировать волны в широком диапазоне частот, включающем оба освоенных к тому времени диапазона.)
«К 2040 г. мы успеем уже воспользоваться этими законами [квантовой гравитации] и получить уверенные ответы на множество глубоких, ставящих в тупик вопросов, — пишет Торн, — в том числе... что было до сингулярности Большого взрыва и вообще, было ли что-нибудь "до"? Существуют ли иные вселенные? И если существуют, то как они соотносятся или связаны с нашей собственной Вселенной?.. Позволяют ли законы физики высокоразвитым цивилизациям создавать и поддерживать кротовые норы для межзвездных путешествий, а также создавать машины времени для путешествия в прошлое?»
Вывод таков: по всей видимости, в ближайшие десятилетия космические детекторы гравитационных волн дадут нам достаточно материала, чтобы разобраться в различных «до-взрывных» теориях и сделать выбор между ними.
Поэт Томас Элиот задал в свое время вопрос: умрет ли Вселенная в грохоте или в слезах? Роберт Фрост спрашивал: что нас погубит, огонь или лед? Последние данные указывают на то, что концом Вселенной станет Большой мороз; температура упадет почти до абсолютного нуля, а разумная жизнь исчезнет. Но можем ли мы утверждать это с уверенностью?
Кое-кто задается еще и таким вопросом о «невозможности»: разве можем мы узнать окончательную судьбу Вселенной, если это событие отделяют от нас триллионы и триллионы лет? Ученые считают, что темная энергия, или энергия вакуума, расталкивает галактики прочь друг от друга и заставляет их разлетаться со все возрастающей скоростью; похоже, Вселенная пошла вразнос. Расширение должно постепенно понижать температуру во Вселенной и в конце концов привести нас всех к Большому морозу. Но что, если это расширение временное? Возможно ли, что в будущем начнется обратный процесс?
К примеру, Большой всплеск—один из сценариев Большого взрыва, в котором Вселенная возникает при столкновении двух мембран, — предполагает, что мембраны, возможно, сталкиваются периодически. Если это так, то расширение, которое мы наблюдаем в настоящий момент и которое вроде бы должно привести к Большому морозу, — это всего лишь временное состояние, за которым последует обратный процесс.
Нынешнее ускоренное разбегание вселенных вызвано темной энергией, причиной существования которой, вероятно, служит «космологическая константа». Поэтому главное — понять эту загадочную константу, или энергию вакуума. Меняется ли эта константа со временем или она действительно постоянна? В настоящее время никто этого наверняка не знает. Данные спутника WMAP, находящегося в настоящее время на околоземной орбите, свидетельствуют о том, что именно эта космологическая константа вызывает нынешнее ускорение разбегания Вселенной, но мы не знаем, постоянно такое состояние или нет.
На самом деле эта проблема не нова и восходит еще к 1916 г., когда Эйнштейн впервые ввел в свои уравнения космологический член. Предложив годом раньше общую теорию относительности, он тогда разрабатывал ее космологические следствия и обнаружил — к собственному немалому удивлению,—что Вселенная не статична, что она либо расширяется, либо сжимается. Но эта мысль, казалось, противоречила фактическим данным.
Эйнштейн столкнулся с парадоксом Бентли, терзавшим еще Ньютона. В 1692 г. достопочтенный Ричард Бентли написал Ньютону невинное письмо и задал страшный по сути вопрос. Если ньютонова сила тяготения способна только притягивать, спрашивал Бентли, то почему Вселенная не схлопывается? Если Вселенная состоит из конечного числа звезд, которые взаимно притягиваются, то все звезды по идее должны были бы слететься в одно место—и тогда вся Вселенная превратилась бы в один огненный шар! Ньютона это письмо очень расстроило — ведь оно указывало на важнейший недостаток его теории: любая теория тяготения, которая предусматривает только притяжение, по сути своей нестабильна. Любое конечное число звезд неизбежно коллапсирует под действием силы притяжения.
Ньютон написал в ответ, что единственный способ создать стабильную Вселенную, — это считать, что в ней бесконечное число равномерно распределенных звезд; при этом каждую звезду тянут во все стороны, и все силы взаимно компенсируются. Это было неглупое решение, но Ньютон был достаточно умен, чтобы понимать; такая стабильность обманчива. Самые слабые колебания заставят подобную систему развалиться, как карточный домик. Она «метастабильна»; т. е. стабильна до тех пор, пока любое слабое возмущение не вызовет ее коллапса. Ньютон заключил, что без Бога в этом деле не обойтись; именно Бог должен время от времени «подправлять» звезды и ставить их на места, чтобы избежать краха Вселенной.
Другими словами, Вселенная по Ньютону подобна гигантским часам, которые были заведены Богом в начале времен и теперь существуют, подчиняясь законам Ньютона. Будучи раз заведенной, дальше Вселенная живет сама, без божественного вмешательства. Тем не менее, согласно Ньютону, время от времени Бог должен подправлять звезды, чтобы не дать Вселенной схлопнуться в единый огненный шар.
Когда Эйнштейн в 1916 г. наткнулся на парадокс Бентли, уравнения правильно подсказали ему, что Вселенная динамична, она или расширяется, или сжимается; статичная Вселенная нестабильна и должна была бы схлопнуться под действием гравитации. Но астрономы в то время настаивали, что Вселенная статична и неизменна. Поэтому Эйнштейн, склоняясь перед наблюдательными данными астрономии, добавил космологическую константу — силу, противоположную тяготению и расталкивающую звезды прочь друг от друга; эта сила должна была компенсировать силу притяжения и противостоять коллапсу Вселенной. (Эта сила, противоположная гравитации, соответствовала энергии, заключенной в вакууме. Иначе говоря, Эйнштейн допустил, что громадные пустые пространства космоса содержат в себе большое количество невидимой энергии.) Предполагалось, что эту константу, которая должна точно компенсировать силу гравитационного притяжения, следует выбирать очень тщательно.
Позже, в 1929 г., когда Эдвин Хаббл показал, что в действительности Вселенная расширяется, Эйнштейн назвал космологическую константу своей «величайшей ошибкой». Однако теперь, 70 лет спустя, получается, что «ошибка» Эйнштейна — космологическая константа — может все-таки оказаться крупнейшим источником энергии во Вселенной; в ней заключено 73% всего вещества и энергии Вселенной. (Напротив, те элементы, из которых строятся наши тела, составляют всего лишь 0,03% Вселенной.) Очень может быть, что ошибка Эйнштейна определит окончательную судьбу Вселенной.
Но откуда взялась космологическая константа? В настоящее время этого никто не знает. В начале времени сила антитяготения была, возможно, достаточно велика, чтобы заставить Вселенную раздуваться и вызвать таким образом Большой взрыв. Затем она по неизвестным причинам внезапно исчезла. СВ этот период Вселенная продолжала расширяться, но медленнее.) А затем, примерно через 8 млрд лет после Большого взрыва, сила антитяготения вновь проявила себя; она начала расталкивать галактики и снова ускорила разбегание Вселенной.
Итак, действительно ли «невозможно» определить окончательную судьбу Вселенной? Или все же возможно? Большинство ученых считает, что размер космологической константы определяется в конечном итоге квантовыми эффектами. Но простейший расчет по упрощенной версии квантовой теории показывает, что теоретическое значение космологической константы отличается от реального в 10 120 раз. Безусловно, это величайшая нестыковка в истории науки.
Но физики также сходятся во мнении о том, что эта странность просто означает, что нам не хватает теории квантовой гравитации. Поскольку космологическая константа возникает из квантовых поправок, необходимо построить «теорию всего» — теорию, которая позволит нам рассчитать не только Стандартную модель, но и размер космологической константы, которая определит окончательную судьбу Вселенной.
Таким образом, при определении окончательной судьбы Вселенной нам не обойтись без теории всего. Ирония ситуации заключается в том, что некоторые физики считают, что разработать такую теорию невозможно.
Теория всего?
Как я уже упоминал, лучшим кандидатом на роль теории всего является сегодня теория струн; но у этой точки зрения есть и противники, считающие, что теория струн не оправдывает ожиданий. С одной стороны, такой ученый, как профессор MIT Макс Тегмарк, пишет: «Я думаю, что в 2056 г. уже можно будет купить футболку с формулами, описывающими унифицированные физические законы нашей Вселенной». С другой стороны, в настоящий момент формируется группа решительных критиков, которые утверждают, что теории струн еще предстоит многое доказать. Не важно, сколько появилось по ее поводу восторженных статей или документальных телефильмов; некоторые говорят, что теория струн пока не дала ни одного факта, который можно было бы проверить. Споры по этому поводу разгорелись с новой силой в 2002 г., когда Стивен Хокинг перешел в другой лагерь и, ссылаясь на теорему о неполноте, заявил, что теория всего вполне может оказаться даже математически невозможной.
Неудивительно, что жаркие споры вынудили одних физиков пойти против других физиков — ведь цель так благородна, хотя и ускользает с завидным постоянством. Стремление объединить все законы природы тысячелетиями дразнило и манило в равной степени и философов, и физиков. Сам Сократ однажды сказал: «Мне это представлялось наивысшим — знать объяснение всего, почему это появляется, почему гибнет, почему существует».
Первое серьезное предположение, имеющее отношение к теории всего, было выдвинуто около 500 г. до н.э.; считается, что примерно в это время греки-пифагорейцы разгадали математические законы музыки. Проанализировав узлы и колебания лирной струны, они сумели показать, что музыка подчиняется замечательно простым математическим правилам. Затем появились рассуждения о том, что, может быть, гармониями лирной струны можно объяснить все в природе. (В каком-то смысле современная теория струн возродила к жизни мечту пифагорейцев!)
Можно смело сказать, что уже в наше время чуть ли не все гиганты физики XX в. пробовали свои силы в разработке единой теории поля. Но, как предостерегает Фримен Дайсон, «поле боя физической науки сплошь усыпано трупами унифицированных теорий».
В 1928 г. газета New York Times вышла с сенсационным заголовком: «Эйнштейн на пороге великого открытия; злится на непрошеное вторжение». Помещенная под ним заметка привела средства массовой информации в неистовство, возбудила вокруг теории всего журналистскую суматоху и довела напряжение в обществе до критической точки. Заголовки кричали: «Эйнштейн поражен суматохой вокруг новой теории! Держит 100 журналистов в напряжении целую неделю!» Десятки журналистов буквально роились вокруг его дома в Берлине и несли круглосуточную вахту, мечтая увидеть гения хотя бы краешком глаза и дать материал позабористее. Эйнштейн вынужден был скрываться.
Астроном Артур Эддингтон писал Эйнштейну: «Вас, может быть, позабавит известие о том, что один из крупнейших универсальных магазинов в Лондоне («Selfridges») поместил в витрине вашу статью (те самые шесть страничек в ряд на одном стенде), чтобы прохожие могли прочесть ее от начала до конца. У витрины собираются большие толпы, все читают». (В 1923 г. Эддингтон предложил собственную единую теорию поля, над которой затем неустанно работал до самой смерти в 1944 г.)
В 1946 г. Эрвин Шрёдингер, один из основателей квантовой механики, собрал пресс-конференцию, на которой озвучил свою единую теорию поля. На пресс-конференции появился даже премьер-министр Ирландии Эмон де Валера. Когда один из репортеров спросил, что он будет делать, если его теория окажется ошибочной, Шрёдингер ответил: «Я уверен, что прав. Если я не прав, я буду выглядеть полным идиотом». (Шрёдингер действительно почувствовал себя оскорбленным, когда Эйнштейн вежливо указал на ошибки в его теории.)
Самым яростным критиком всякой унификации был физик Вольфганг Паули. Он упрекал Эйнштейна, перефразируя Библию: «Итак, что Бог разлучил, того человек да не сочетает». Он беспощадно громил любую недоработанную теорию, отпуская язвительные замечания: «Эту теорию нельзя даже назвать неверной». Тем не менее по иронии судьбы величайший скептик Паули сам заразился всеобщим безумием. В 1950-х гг. он вместе с Вернером Гейзенбергом предложил собственную единую теорию поля.
В 1958 г. Паули представил единую теорию Гейзенберга-Паули в Колумбийском университете. На Нильса Бора, присутствовавшего в зале, она не произвела особого впечатления. Бор встал и сказал: «Мы здесь, в задних рядах, убеждены, что ваша теория безумна. Но наши мнения разделились в том, достаточно ли она безумна». Теория подверглась уничижительной критике. Поскольку все очевидные варианты единой теории были давно рассмотрены и отвергнуты, истинная единая теория поля должна была выглядеть совершенно неожиданно и в корне отличаться от всех прежних версий. Теория Гейзенберга-Паули была попросту слишком традиционной, слишком обычной, слишком здравой, чтобы оказаться истинной. (В том же году Паули был очень встревожен, когда Гейзенберг заметил в одной из радиопередач, что в их общей теории не хватает лишь некоторых технических деталей. Паули отправил друзьям письмо с пустым прямоугольником и подписью под ним: «Таким образом я хочу продемонстрировать миру, что способен рисовать, как Тициан. Моему рисунку не хватает лишь технических деталей».)
Критика теории струн
На сегодняшний день ведущим (и единственным) кандидатом на роль теории[33] всего является теория струн. Но возникла, естественно, и отрицательная реакция. Оппоненты утверждают: теперь, чтобы получить постоянную должность в одном из лучших университетов, вы должны непременно работать над теорией струн. Если вы не занимаетесь этой теорией, останетесь без работы. Это повальное увлечение сегодняшнего дня — и физика, разумеется, от этого страдает.
Я только улыбаюсь, когда слышу подобные высказывания, — ведь физика, как любое другое человеческое занятие, подвержена увлечениям и моде. Судьбы великих теорий, особенно тех, что рождаются на острие человеческого познания, могут испытывать неожиданные и даже случайные взлеты и падения. Вообще, ситуация поменялась не так уж давно; исторически именно теория струн была изгоем, теорией-отступником и жертвой мейнстрима.
Теория струн зародилась в 1968 г., когда два молодых свежеиспеченных доктора — Габриель Венециано и Махико Судзуки — наткнулись на формулу, описывавшую вроде бы столкновения субатомных частиц. Вскоре обнаружилось, что эта чудесная формула может быть получена как описание столкновения колеблющихся струн. Но к 1974 г. работа над этой теорией практически замерла. Появившаяся на горизонте новая теория — квантовая хромодинамика, или теория кварков и сильного взаимодействия, — подобно колеснице Джаггернаута, давила своей мощью все остальные теории. Физики толпами бросали теорию струн ради работы над новой многообещающей теорией. Все финансирование, все рабочие места и признание доставались ученым, работавшим над кварковой моделью.
Я хорошо помню те темные годы. Над теорией струн продолжали работать только отъявленные упрямцы и авантюристы. А когда выяснилось, что струны, о которых идет речь, способны колебаться только в десятимерном пространстве, теория вообще стала объектом насмешек. Пионер теории струн Джон Шварц из Калифорнийского технологического иногда сталкивался в лифте с Ричардом Фейнманом. Фейнман, всегда любивший пошутить, частенько спрашивал: «Ну, Джон, сколько измерений в пространстве, где вы сегодня находитесь?» Мы даже шутили, что единственное место, где можно найти физика-теоретика — специалиста по теории струн, — это очередь на биржу труда.
(Нобелевский лауреат Мюррей Гелл-Манн, основатель кварковой модели, однажды признался мне, что из жалости к теоретикам-струнникам организовал у себя в Калифорнийском технологическом институте «заповедник для вымирающего вида, специалистов по теории струн», чтобы люди вроде Джона не лишились работы.)
Говоря о том, что сегодня многие молодые физики стремятся работать над теорией струн, Стив Вайнберг написал: «Теория струн представляет собой на данный момент единственного претендента на роль окончательной теории, — так можно ли ожидать, что многие способнейшие молодые теоретики не захотят работать над ней?»
Действительно ли теорию струн невозможно проверить?
Одно из главных возражений против теории струн состоит в том, что ее невозможно проверить. Ее противники утверждают, что для реальной проверки этой теории потребовался бы ускоритель частиц размером с галактику.
Но критики забывают о том, что очень многое в науке делается отнюдь не прямо; очень часто результат проще получить косвенным путем. Никто еще не побывал на Солнце, чтобы провести непосредственные измерения, но мы можем анализировать спектральные линии солнечного света и потому знаем, что Солнце состоит из водорода.
Или возьмем черные дыры. Теория черных дыр восходит к 1783 г., когда Джон Мичелл опубликовал статью в «Философских трудах Королевского общества». Он утверждал, что звезда может быть настолько массивной, что «весь излучаемый таким телом свет вынужден будет вернуться к нему под действием его собственной гравитации». В течение нескольких столетий теория темной звезды Мичелла влачила жалкое существование, поскольку проверить ее непосредственно было невозможно.
В 1939 г. Эйнштейн даже написал статью, в которой доказывалось, что подобная темная звезда не может сформироваться естественным путем. Главным аргументом было то, что темные звезды невозможно обнаружить по самой их природе — ведь они по определению невидимы. Но сегодня благодаря космическому телескопу имени Хаббла у нас есть великолепные доказательства существования черных дыр. В настоящее время мы убеждены, что в центрах галактик могут скрываться миллиарды черных дыр; в нашей собственной Галактике могут существовать десятки бродячих черных дыр. Но суть в том, что все данные о черных дырах получены косвенным путем; а именно мы получаем информацию о черной дыре путем изучения аккреционного диска, который вращается вокруг нее.
Более того, многие «непроверяемые» теории со временем становятся проверяемыми. На то, чтобы доказать существование атомов, предсказанных Демокритом, потребовалось две тысячи лет. Еще в XIX в. физика вроде Людвига Больцмана, верившего в атомную теорию, могли затравить насмерть, а сегодня у нас есть великолепные фотографии атомов. Великий скептик Паули ввел в 1930 г. понятие нейтрино — частицы настолько неуловимой, что она способна пролететь сквозь свинцовый шар размером с Солнечную систему и ни с чем при этом не провзаимодействовать. Паули сказал: «Я совершил страшный грех; я ввел частицу, которую невозможно пронаблюдать». Обнаружить нейтрино было «невозможно», поэтому в течение нескольких десятков лет необычная частица считалась чуть ли не фантастикой. А сегодня мы умеем создавать нейтринные пучки.
Уже запланировано несколько экспериментов, которые, как надеются физики, помогут косвенным образом проверить теорию струн.
• Большой адронный коллайдер, возможно, окажется достаточно мощным для получения суперчастиц, которые предсказаны теорией суперструн (как и другими теориями суперсимметрии) и представляют собой высшие моды колебаний.
• Как я уже упоминал, в 2015 г. в космос будет запущена LISA — космическая антенна с лазерным интерферометром. LISA и ее преемник, Наблюдатель Большого взрыва, окажутся, возможно, достаточно чувствительными для проверки нескольких теорий о том, что было до Большого взрыва, включая и различные версии теории струн.
• Множество лабораторий сейчас пытаются обнаружить, действует ли в миллиметровом масштабе знаменитый ньютоновский закон о том, что сила притяжения обратно пропорциональна квадрату расстояния. Отклонения от этого закона могут говорить о существовании высших измерений. (Если существует, к примеру, четвертое пространственное измерение, то сила притяжения должна уменьшаться пропорционально кубу, а не квадрату расстояния.) Последняя версия теории струн (М-теория) утверждает, что измерений на самом деле 11.
• Многие лаборатории пытаются обнаружить темное вещество, или скрытую массу, ведь Земля движется в космическом потоке темного вещества. Теория струн позволяет сформулировать конкретные проверяемые предсказания о физических свойствах темного вещества — ведь оно, вероятно, представляет собой высшие колебания струн (например, фотино).
• Есть надежда, что серия дополнительных экспериментов (к примеру, эксперименты по определению поляризации нейтрино, проводимые на Южном полюсе) позволит обнаруживать черные мини-дыры и другие странные объекты путем анализа аномалий космических лучей с энергиями, превосходящими, возможно, энергии частиц в Большом адронном коллайдере. Эксперименты с космическими лучами и с коллайдером откроют новые интересные горизонты, помимо Стандартной модели.
• Некоторые физики допускают, что сила Большого взрыва могла разогнать какую-нибудь крошечную суперструну до поистине космических масштабов. Физик Александр Виленкин из Университета Тафтса пишет: «Одна очень интересная возможность заключается в том, что суперструны... могут достигать астрономических масштабов... В этом случае мы могли бы пронаблюдать их в небе и таким образом напрямую проверить теорию суперструн». (Вероятность найти в космосе гигантскую реликтовую суперструну, сохранившуюся с момента Большого взрыва, очень мала.)
О неполноте физики
В 1980 г. Стивен Хокинг вновь разжег интерес к теории всего; он прочел.лекцию под названием «Близится ли конец теоретической физики?», в которой сказал: «Возможно, мы увидим полную теорию еще при жизни некоторых из присутствующих здесь». Он утверждал, что с 50-процентной вероятностью полная и окончательная теория будет найдена в течение ближайших 20 лет. Но когда наступил 2000 г., а консенсуса по поводу теории всего по-прежнему не было, Хокинг изменил свое мнение и перенес ту же вероятность в 50% на следующие 20 лет.
Затем в 2002 г. Хокинг еще раз передумал и заявил, что теорема Гёделя о неполноте, вполне возможно, указывает на принципиальную ошибку в его первоначальных рассуждениях. Он написал: «Некоторые люди будут очень разочарованы тем, что не существует окончательной теории, которую можно сформулировать в конечном числе пунктов. Я раньше тоже принадлежал к этому лагерю, но теперь изменил мнение... Теорема Гёделя гарантирует, что для математиков работа всегда останется. Я думаю, что М-теория сделает то же самое для физиков».
Его аргументы не новы: поскольку математика неполна, а языком физики является именно математика, в физике всегда будут существовать неподвластные нам истинные утверждения, а потому теории всего быть не может. Теорема о неполноте, убившая мечту греков о том, чтобы все истинные утверждения в математике были доказаны, сделает невозможным и создание теории всего.
Фримен Дайсон был более красноречив: «Гёдель доказал, что мир чистой математики неисчерпаем; никакое конечное число аксиом и логических правил не в состоянии охватить всю математику... Я надеюсь, что аналогичная ситуация существует и в мире физики. Если мой взгляд на будущее верен, то мир физики и астрономии тоже неисчерпаем; не важно, сколько пройдет времени, — мы всегда будем наблюдать новые явления и получать новую информацию; всегда будут появляться новые миры, которые можно исследовать, — постоянно расширяющиеся владения жизни, сознания и памяти».
Астрофизик Джон Барроу так обобщил этот логический подход: «Наука основана на математике; математика не в состоянии раскрыть все истины; следовательно, наука не в состоянии раскрыть все истины».
Подобные аргументы могут быть верны или неверны, но потенциальные недостатки у такой точки зрения имеются. Профессиональные математики по большей части игнорируют в своей работе теорему о неполноте. Дело в том, что теорема о неполноте начинает с анализа утверждений, которые ссылаются сами на себя; в логике такие утверждения называют самоотносимыми. Приведем примеры парадоксальных утверждений:
Это высказывание ложно.
Я лжец.
Это утверждение невозможно доказать.
В первом случае, если высказывание истинно, это значит, что оно ложно. Если высказывание ложно, то само утверждение истинно. Точно так же и во втором: если я говорю правду, это означает, что я лгу; а если я лгу, то я говорю правду. В последнем случае, если высказывание истинно, то доказать его истинность невозможно.
(Второе высказывание—это знаменитый парадокс лжеца. Критский философ Эпименид обычно иллюстрировал этот парадокс следующим утверждением: «Все критяне лжецы». Однако св. Павел не уловил смысла этого высказывания и написал в послании к Титу: «Из них же самих один стихотворец сказал: "Критяне всегда лжецы, злые звери, утробы ленивые". Свидетельство это справедливо».)
Теорема о неполноте строится на утверждениях вроде «Это высказывание нельзя доказать при помощи аксиом арифметики» и сплетает сложную паутину подобных самоотносимых парадоксов.
Хокинг, однако, использует теорему о неполноте, чтобы показать, что теория всего невозможна. Он утверждает, что ключ к теореме Гёделя ?—тот факт, что математика вообще самоотносима и что физика тоже страдает этой болезнью. Наблюдателя невозможно изолировать от процесса наблюдения; это означает, что физика всегда будет ссылаться сама на себя — ведь мы не в состоянии покинуть Вселенную. В конце концов, наблюдатель тоже состоит из атомов и молекул, а потому неизбежно является составной частью и участником эксперимента, который проводит.
Но существует способ обойти возражения Хокинга. Чтобы не сталкиваться с парадоксами, присущими теореме Гёделя, профессиональные математики сегодня поступают очень просто: они заранее исключают из своей работы самоотносимые высказывания. В этом случае теорему о неполноте можно обойти. Вообще, взрывное развитие математики со времен Гёделя в значительной степени достигнуто за счет игнорирования его теоремы о неполноте, т. е. за счет постулирования того факта, что последние работы не допускают самоотносимых высказываний.
Точно так же может оказаться возможным сформулировать теорию всего, которая объяснит все известные экспериментальные данные вне зависимости от бесконечного спора об отделении наблюдателя от наблюдаемого явления. Если такая теория всего сможет объяснить все, начиная с Большого взрыва и заканчивая сегодняшней видимой Вселенной, то будет уже неважно, как именно мы опишем взаимодействие между наблюдателем и наблюдаемым. Более того, можно говорить об одном из критериев правильности такой теории: ее выводы должны быть совершенно независимы от того, как именно мы разделяем наблюдателя и наблюдаемое.
Скажем больше. Природа может быть беспредельной и неисчерпаемой, даже если она основана всего на нескольких принципах. Рассмотрим шахматную партию. Попросите пришельца с другой планеты определить правила только из наблюдений за игрой. Через некоторое время пришелец сможет уверенно сказать, как ходят пешки, слоны и короли. Правила игры просты и конечны. Но вариантов в ней поистине астрономическое количество. Точно также законы и правила природы, возможно, просты и конечны, но приложения этих правил могут оказаться неисчерпаемыми. Наша цель — отыскать эти правила.
В определенном смысле у нас уже есть полная теория многих явлений. Никто никогда не видел, чтобы нарушались уравнения Максвелла для света. Стандартную модель часто называют теорией почти всего. Представьте на мгновение, что мы можем исключить гравитацию. В этом случае Стандартная модель становится вполне надежной теорией всех явлений, за исключением гравитации. Может быть, эта теория некрасива, но она работает. Даже теорема о неполноте не мешает нам обладать разумной теорией всего (за исключением гравитации).
Мне представляется поистине замечательным, что на одном листе бумаги можно записать законы, которые управляют всеми известными физическими явлениями в пределах 43 порядков по величине — от дальних пределов космоса на расстоянии более 10 млрд световых лет до микромира кварков и нейтрино. На этом листе будет всего две формулы: теория гравитации Эйнштейна и Стандартная модель. По-моему, это говорит об абсолютной простоте и гармонии природы на фундаментальном уровне. Вселенная могла оказаться неправильной, случайной или непостоянной. Но мы видим, что на самом деле она едина, гармонична и красива.
Нобелевский лауреат Стив Вайнберг сравнивает наши поиски теории всего с поисками Северного полюса. На протяжении веков древние моряки пользовались картами, на которых Северный полюс просто отсутствовал. Стрелки всех компасов, все маршруты указывали на этот отсутствующий кусок карты, но в реальности никому не удавалось там побывать. Точно так же все наши данные и теории безошибочно указывают на теорию всего. Ее не хватает нам для полноты уравнений.
Всегда будут существовать вещи, лежащие далеко за пределами возможностей нашей науки; объекты и явления, которые невозможно исследовать (к примеру, точное положение электрона или мир, существующий по ту сторону скорости света). Но я убежден, что фундаментальные законы познаваемы и конечны. И ближайшие годы могут стать самыми интересными в истории физики — ведь нам предстоит исследовать Вселенную при помощи нового поколения ускорителей частиц, космических детекторов гравитационных волн и других новых технологий. Мы не в конце пути; скорее мы стоим на пороге новой физики. Но, что бы мы ни обнаружили, за любыми достижениями непременно откроются новые горизонты. Они ждут нас.


Вернуться к началу
 Профиль  
 
 Заголовок сообщения: Невозможное возможно
СообщениеДобавлено: 19 май 2011, 03:29 
Администратор
Аватара пользователя

Зарегистрирован: 22 май 2009, 00:24
Сообщения: 14637
Примечания
1
Причина кроется в законах квантовой механики. Вводя в некую теорию все возможные квантовые поправки (утомительный процесс, известный как «перенормировка»), мы нередко обнаруживаем, что явления, которые раньше (на классическом уровне) казались запрещенными, снова появляются на горизонте и их необходимо принимать в расчет. Это означает, что любое явление, не запрещенное явным образом (к примеру, одним из законов сохранения), после введения квантовых поправок может вновь попасть в поле зрения ученых.
2
Во 2-й книге «Государства» Платон писал: «Ни один из них [обладателей перстня невидимости] не оказался бы настолько твердым, чтобы остаться в пределах справедливости и решительно воздержаться от присвоения чужого имущества и не притрагиваться к нему, хотя каждый имел бы возможность без всякой опаски брать что угодно на рыночной площади, проникать в дома и сближаться с кем вздумается, убивать, освобождать из заключения кого захочет — вообще действовать среди людей так, словно он равен богу... Если человек, овладевший такою властью, не пожелает когда-либо поступить несправедливо и не притронется к чужому имуществу, он всем, кто это заметит, покажется в высшей степени жалким и неразумным...»
3
Кроме того, нацисты направили экспедицию в Индию для исследования некоторых мифологических утверждений индуизма (примерно как в сюжете фильма «Искатели утраченного ковчега»). Нацистов очень интересовало описанное в «Махабхарате» странное и весьма мощное оружие, в том числе летательный аппарат.
4
Подобные фильмы стали также причиной распространения множества ложных представлений о лазерах. На самом деле лазерный луч невидим; видимым он становится только в том случае, если рассеивается частицами пыли в воздухе. Поэтому когда Тому Крузу в фильме «Миссия невыполнима» приходится пробираться сквозь паутину лазерных лучей, лучи эти по идее должны были бы быть невидимыми, а не красными, как в фильме. Кроме того, во многих кинематографических сражениях с применением лучевого оружия мы видим, как лазерный импульс летит через комнату — а это невозможно, поскольку свет лазера движется, понятно, со скоростью света 300 000 км/с.
5
Точнее — что гамма-всплески не связаны со структурой нашей Галактики и поэтому происходят либо сравнительно близко от нас, либо чрезвычайно далеко. Доказательство того, что источники гамма-ксплесков удалены от нас на миллиарды световых лет, было получено только в 1997 г. —Прим. пер.
6
Советский Союз распался в 1991 г., а первая публикация по гамма-всплескам появилась в 1973 г. и описывала 16 таких явлений, наблюдавшихся в период с июля 1969 г. по июль 1972 г. —Прим. пер.
7
Лучше всего описанный случай телепортации датируется 24 октября 1593 г, В этот день некий Гиль Перес, солдат филиппинской дворцовой стражи, стоявший на посту в губернаторском дворце Манилы, появился внезапно на Плаза-Майор в Мехико-Сити. Ошеломленный и потерянный, он был тут же арестован мексиканскими властями, решившими, что он состоит в сговоре с сатаной. Представ перед судом святейшей инквизиции, он смог сказать в свою защиту лишь то, что перенесся из Манилы в Мексику «быстрее, чем прокукарекает петух». (Рассказ об этом мгновенном перемещении выглядит невероятным; историк Майк Дэш заметил, что самые ранние достоверные записи об этом происшествии сделаны примерно через сто лет после описываемого события, а потому им нельзя полностью доверять.)
8
Ранние произведения Конан Дойла отличаются методичностью и логикой, характерными для медицинской профессии; знаменитый дедуктивный метод Холмса является выражением именно такого подхода к жизни. Так почему же позже Конан Дойл резко отошел от холодной рациональной логики Холмса и переключился на головокружительные приключения профессора Челленджера, который не прочь был заглянуть в запретные миры мистицизма, оккультизма и пограничных для науки областей человеческого опыта? Автор в корне переменился после гибели в Первой мировой войне нескольких близких и родных ему людей, в том числе любимого сына Кингсли, брата, двух зятьев и двух племянников. Эти потери навсегда оставили в его душе глубокий эмоциональный шрам.
Подавленный трагической гибелью близких, Конан Дойл с головой погрузился в мир оккультизма, увлечение которым не покидало его уже до конца жизни. Возможно, он верил, что спиритуализм поможет ему связаться с душами любимых людей. Он резко перешел от мира рациональной науки к мистицизму и начал читать по всему миру ставшие знаменитыми лекции о необъясненных психических явлениях.
9
Точнее, принцип неопределенности Гейзенберга утверждает, что неопределенность (стандартное отклонение) положения частицы, умноженная на неопределенность ее момента, должна быть больше или равна постоянной Планка, деленной на 2π. Или произведение неопределенности энергии частицы на неопределенность ее времени также должно быть больше или равно постоянной Планка, деленной на 2π. Если мы устремим постоянную Планка к нулю, то получим обычную ньютоновскую физику, где все неопределенности равны нулю.
Триггви Эмилссон позволил себе сострить по поводу того факта, что невозможно одновременно знать точное значение координаты, момента, энергии или времени электрона: «Историки пришли к выводу, что Гейзенберг, разрабатывая принцип неопределенности, думал о своей интимной жизни: когда есть время, не хватает энергии, а когда момент подходящий, невозможно определиться с позицией».
10
Предположим на мгновение, что можно телепортировать макроскопические объекты, включая и людей. При этом возникает немало тонких философских и теологических вопросов о том, что происходит с «душой» при телепортации человека. Если вы мгновенно перемещаетесь из одного места в другое, то переносится ли вместе с вами и ваша душа?
Патрик Келли в рассказе «Думать как динозавр» исследовал еще один вопрос этики, связанный с телепортацией. Сюжет рассказа строится на том, что женщина готовится к телепортации на другую планету, но в процессе передачи сигнала возникает сбой. В результате тело путешественницы не уничтожено, нетронутыми остались и ее эмоции, а в месте назначения возникла ее точная копия, которая, естественно, отказывается войти в кабинку для телепортации и быть уничтоженной. Возникает кризис, поскольку хладнокровные инопланетяне, снабдившие человечество этой технологией, рассматривают проблему под чисто практическим углом: для поддержания равновесия одна из копий должна быть уничтожена. Подверженные эмоциям люди не могут так легко разрешить эту дилемму.
В большинстве фантастических произведений телепортация преподносится как благо. А вот Стивен Кинг в рассказе «Долгий джонт» рассмотрел опасные побочные явления, которыми он может сопровождаться. В будущем телепортация стала обычным явлением и получила название «джонт». Рассказ начинается с того, что отец перед телепортацией на Марс рассказывает детям историю открытия джонта. Ученый, первым обнаруживший это явление, телепортировал мышей, но благополучно переносили телепортацию только те мыши, которых предварительно усыпили. Мыши, бодрствовавшие во время переноса, умирали страшной смертью. Поэтому людей всегда усыпляют перед телепортацией, это обычная процедура. Единственным человеком, прошедшим через телепортацию в состоянии бодрствования, стал приговоренный преступник, которому за участие в эксперименте было обещано полное прощение. Но после телепортации он умер от обширного инфаркта, успев произнести только: «Там вечность».
К несчастью, сын этого человека так заинтересовался этой таинственной историей, что решил задержать дыхание и не спать. Результат оказался трагичным. После телепортации мальчик внезапно сошел с ума. У него побелели волосы, глаза пожелтели, он пытается выцарапать себе их. Тайна раскрыта. Если вещество при телепортации переносится мгновенно, то для сознания путешествие занимает целую вечность; время представляется бесконечным, и человек лишается рассудка.
11
Кроме того, на званом обеде можно демонстрировать поразительные достижения телепатии. Попросите каждого из присутствующих написать на листке бумаги какое-нибудь имя и соберите свернутые листки в шляпу. Затем доставайте каждый листок по очереди и, не открывая, произносите вслух написанное на нем имя. Аудитория будет поражена — ведь на их глазах совершается настоящее чудо. В самом деле, некоторые «маги» умудряются заработать себе славу и состояние в первую очередь за счет этого несложного трюка.
(На самом деле эта поразительная демонстрация чтения мыслей объясняется очень просто. Вы вытягиваете первый листок и прочитываете его про себя, а вслух объявляете, что не можете разглядеть его содержания из-за неподходящего состояния «психоэфира». Затем вы достаете из шляпы второй листок и, не открывая его, произносите вслух имя, которое прочли в первом. Человек, написавший это имя, будет поражен и решит, что вы прочли нераспечатанный второй листок. Теперь вы открываете второй листок и молча читаете его содержимое. Вытаскиваете третий запечатанный листок и объявляете вслух имя, прочитанное на втором. И так далее. Каждый раз, называя вслух имя, вы на самом деле оглашаете содержимое предыдущего листка.)
12
Психическое состояние человека можно приблизительно определить, если проследить в точности за движением его глаз, скажем, при разглядывании фотографии. Если направить тонкий луч света на глазное яблоко, то отраженный луч можно будет увидеть на стене или специальном экране. Движение отраженного луча света на стене позволит затем в точности восстановить, как движется глаз при разглядывании картинки. (К примеру, при разглядывании человеческого лица на фотографии взгляд наблюдателя, как правило, сначала бегает от одного глаза к другому, затем перемещается на рот, снова возвращается к глазам — и только после этого переходит к остальной части изображения.)
Если при разглядывании некоего изображения точно отслеживать размер зрачков, то можно определить, какие — приятные или неприятные — у человека возникают мысли при сканировании глазами конкретных участков картинки. Таким образом можно определить эмоциональное состояние человека. (К примеру, если убийце показать фотографию места преступления, он испытает сильные эмоции при разглядывании именно той части картинки, где находилось тело, — но ведь точное его положение знают только сам убийца и полиция!)
13
В Общество психических исследований входили лорд Рэлей (нобелевский лауреат), сэр Уильям Крукс (изобретатель «трубки Крукса», используемой в электронике), Шарль Рише (нобелевский лауреат), американский психолог Уильям Джеймс и премьер-министр Артур Бальфур. Общество поддерживали такие знаменитости, как Марк Твен, Артур Конан Дойл, Альфред, лорд Теннисон, Льюис Кэрролл и Карл Юнг.
14
Райн первоначально хотел стать священником, но затем, во время обучения в Чикагском университете, переключился на ботанику. Побывав в 1922 г. на лекции сэра Артура Конан Дойла, посвященной общению с душами умерших, Райн заинтересовался психическими явлениями. Позже он познакомился с книгой сэра Оливера Лоджа «Выживание человека», рассказывающей о будто бы имевшем место во время сеансов общении с умершими; книга еще укрепила интерес Райна. Его, однако, не удовлетворяло современное состояние спиритуализма — да и репутация этого занятия была сильно подпорчена некрасивыми историями о мошенничестве и обмане. Более того, собственные исследования Райна послужили разоблачению одной из известных спириток, некой Марджери Крэндон; это разоблачение принесло ему презрение многих спиритуалистов, включая и Конан Дойла.
15
«Выступ» на графике электрического потенциала ЭЭГ приблизительно через 300 мс после воспринимаемого испытуемым сигнала. — Прим пер.
16
Наконец, даже ограниченные формы телепатии, став в будущем обычными, породили бы множество юридических и моральных проблем. Во многих странах запрещено записывать телефонные разговоры без разрешения ведущего их человека, так что в будущем вполне может появиться и запрет на запись рисунков мыслей человека без его прямого разрешения — причем запрет безусловный. А учитывая неуловимую и очень «текучую» природу мыслей человека, рисунки мыслей, скорее всего, никогда не будут иметь силу в суде. В фильме «Особое мнение» с Томом Крузом ставится этический вопрос о том, можно ли арестовать человека за преступление, которого он еще не совершил. В будущем, возможно, встанет вопрос и о том, являются ли рисунки мыслей, свидетельствующие о намерении человека совершить преступления, инкриминирующим доказательством против него. Будут ли угрозы, высказанные вслух, считаться сопоставимыми с мысленными угрозами?
Встанет вопрос и о правительственных органах, о службах безопасности, которые будут подвергать людей сканированию мозга, не спрашивая их согласия и не оглядываясь на законы. Будет ли это считаться допустимым? Легально ли читать мысли террориста, чтобы узнать его планы? Легально ли имплантировать ложные воспоминания, чтобы обмануть кого-то? В фильме «Вспомнить все» с Арнольдом Шварценеггером постоянно возникает вопрос о том, подлинны ли воспоминания человека или внедрены извне, — ведь это может изменить саму природу того, кто мы есть.
Вероятно, эти и другие подобные вопросы еще много десятилетий будут оставаться чисто гипотетическими, но технология развивается, хотя и медленно, — и эта технология безусловно вызовет в будущем моральные, юридические и общественные проблемы. К счастью, у нас еще достаточно времени, чтобы подготовиться к ним.
17
Элемент объемного изображения, по аналогии с «пиксель». —Прим. пер.
18
Автор приписывает Шекспиру цитату, принадлежащую английскому фантасту Нилу Гейману (Neil Gaiman). — Прим. пер.
19
Удивительного Рэнди задевало, что профессиональные иллюзионисты, ловко надувающие легковерных простаков, приписывают себе психокинетические возможности и тем самым вводят в заблуждение ничего не подозревающую публику, и он занялся профессиональным разоблачением всевозможных мошеннических трюков. Особенно ему нравилось повторять каждый новый трюк, исполненный медиумом. Сам Удивительный Рэнди принадлежал скорее к традиции великого Гудини и занимался одновременно демонстрацией иллюзий и разоблачением обманщиков и шарлатанов, пытавшихся при помощи своих умений ввести публику в заблуждение и заработать на этом. Рэнди утверждает, что может обмануть своими трюками даже ученых. Он говорит: «Я могу прийти в лабораторию и заморочить головы любым ученым».
20
Профессор Пенроуз утверждает, что человек не мог бы мыслить без квантовых эффектов, которые, безусловно, должны присутствовать в мозге. Большинство специалистов-компьютерщиков скажет, что каждый нейрон мозга можно воспроизвести при помощи сложного набора транзисторов; отсюда следует, что мозг можно сопоставить с классическим компьютером. Мозг чрезвычайно сложен, но по сути своей состоит из набора нейронов, поведение которых может быть смоделировано при помощи транзисторов. Пенроуз не согласен с этим утверждением. Он утверждает, что в клетке есть структуры, известные как микротубулы, которые демонстрируют квантовое поведение, а потому мозг невозможно свести к простому набору электронных компонентов.
21
Так что наши механические создания могут в конце концов послужить ключом к нашему же выживанию. Как говорит Марвин Мински, "мы, люди, не конечная точка эволюции, так что если мы можем сделать машину такой же умной, как человек, то мы, вероятно, можем также сделать машину гораздо умнее человека. Нет смысла создавать еще одного человека. Хочется создать машину, которая сможет делать вещи, которые мы сами делать не можем".
22
О бессмертии, конечно, человек мечтает с тех самых пор, когда он, один в животном царстве, начал осознавать собственную смертность. Говоря о бессмертии, Вуди Аллен однажды сказал: «Мне не нужно бессмертие через работу. Я хочу быть по-настоящему бессмертным, т.е. не умирать. Я не хочу жить в сердцах соотечественников. Я предпочел бы продолжать жить в собственной квартире». Моравек, в частности, уверен, что в далеком будущем мы сольемся со своими творениями, чтобы образовать разум более высокого порядка. Для этого потребуется продублировать 100 млрд нейронов нашего мозга, каждый из которых связан, может быть, с несколькими тысячами других нейронов. Представьте: человек сидит на столе в операционной, а рядом лежит подготовленное тело робота. Начинается операция. Одновременно с удалением каждого нейрона из тела человека в теле робота создается точно такой же «кремниевый» нейрон. Идет время. Нейроны тела заменяются на кремниевые нейроны робота постепенно, поэтому все время операции человек сохраняет сознание. В конце концов мозг полностью переносится в тело робота, а объект операции спокойно наблюдает за происходящим. И вот результат: еще вчера человек умирал в собственном потрепанном отказывающем теле, а теперь обнаруживает себя в бессмертном теле, но обладает при этом прежней памятью и прежней личностью — и все это не теряя сознания.
23
К сожалению, этот срок представляется слишком оптимистическим. Ни в 2005 финансовом году, ни в 2009-м NASA не располагает средствами на опытно-конструкторские работы по проекту TPF и вынуждено ограничиваться разработкой для него отдельных технологий. — Прим. пер.
24
В целом, хотя местные языки и культуры будут и дальше процветать в разных регионах Земли, появятся также единые всепланетные язык и культура, которые охватят собой все континенты. Глобальная культура будет существовать параллельно с местными. Вообще говоря, в отношении элит всех обществ такая ситуация уже сложилась.
Но существуют и силы, противодействующие движению к единой всепланетной системе. Террористы, скажем, инстинктивно понимают, что при движении к планетарной цивилизации центральными в новой культуре станут терпимость и светский плюрализм, а такая перспектива представляет угрозу для людей, которым удобнее жить в прошлом тысячелетии.
25
Еще одним достоинством ионного двигателя по сравнению с химическим, о котором автор будет говорить ниже, является очень высокое приращение импульса ракеты на единицу массы израсходованного рабочего тела. —Прим. пер.
26
Еще один солнечный парус, совсем небольшой, был запущен в августе 2008 г. на частной американской ракете «Фалкон-1». Увы, и этот пуск закончился аварией. — Прим. пер.
27
В сущности, «Прометей» создавался под единственный космический проект тяжелой АМС к спутникам Юпитера, к настоящему времени уже отмененный. Фактически в 2005 финансовом году проект «Прометей» получил только 270,3 млн, в 2006-м — 56,5 млн, а в 2007-м — 5,5 млн долл., после чего прекратил существование как самостоятельная разработка. — Прим. пер.
28
Крайне сомнительно, так как на такой скорости до Плутона всего двое суток лёту, а при равномерном разгоне и торможении — четверо. — Прим. пер.
29
Это сильное преувеличение. Да, после годового или даже полугодового полета человеку трудно сразу встать и пойти, да и не стоит этого делать, но уже через несколько дней навыки восстанавливаются как у русских, так и у американских космонавтов, тем более что они уже 13 лет летают вместе. —Прим. пер.
30
Еще одна привлекательная черта такой интерпретации — то, что при этом не возникает нужды в дополнительных предположениях, достаточно первоначального волнового уравнения. В этой системе нам не обязательно схло-пывать волновые функции или производить наблюдения. Волновая функция просто делится, сама по себе, автоматически, без всякого вмешательства извне или дополнительных условий. В этом смысле теория множественности миров принципиально проще всех остальных теорий, в которых требуются внешние наблюдатели, измерения, схлопывание волн и т.п. Правда, мы получаем в нагрузку бесконечное число вселенных, но волновая функция управляется с ними самостоятельно, без всяких дополнительных предположений со стороны.
Одно из объяснений того факта, что наша физическая Вселенная представляется такой стабильной и неизменной, строится на утрате когерентности; считается, что мы просто потеряли синхронность со всеми остальными параллельными вселенными. Но потеря когерентности не уничтожает параллельные вселенные и не отрицает их существования; она объясняет лишь, почему наша собственная Вселенная среди бесконечного множества других вселенных кажется такой стабильной. Идея декогерентности основана на представлении о том, что вселенные способны расщепляться на множество других вселенных, но наша Вселенная, благодаря взаимодействию с окружающим миром, полностью изолирована от остальных.
31
Были возражения. Некоторые ученые заявляли, что человеческий мозг— самое сложное, может быть, творение матери-природы в Солнечной системе, нарушает второй закон термодинамики. Человеческий мозг состоит из более чем 100 млрд нейронов и превосходит по сложности любой объект на расстоянии до 24 трлн миль от Земли, т. е. до соседней звезды. Возникает вопрос: как согласуется этот мощнейший удар по энтропии со вторым законом? Ведь сама эволюция, кажется, тоже нарушает этот закон. Ответ в том, что уменьшение энтропии, вызванное появлением и развитием высших организмов, включая людей, происходит за счет роста суммарной энтропии где-то в другом месте. Уменьшение энтропии, вызванное эволюцией, более чем компенсируется ростом энтропии в окружающем мире, а именно энтропии падающего на Землю солнечного света. Развитие человеческого мозга в результате эволюции действительно снижает энтропию, но это падение более чем компенсируется создаваемым нами же хаосом (в пример можно привести загрязнение окружающей среды, выброс тепла, глобальное потепление и т. п.).
32
Однако Тесла, кроме всего прочего, был фигурой трагической; в результате постоянных обманов он лишился, вероятно, денег и признания за многие патенты и изобретения, подготовившие появление радио и телевидения и приход телекоммуникационной революции. (Тем не менее мы, физики, позаботились о том, чтобы имя Тесла не было забыто. Мы назвали его именем единицу магнитной индукции. Один тесла равняется 10 000 Г и примерно в 20 000 раз превосходит магнитное поле Земли.)
Сегодня Тесла почти забыт, и лишь некоторые из самых эксцентричных его заявок превратились в любимую игрушку сторонников теории всемирного заговора и источник сюжетов городского фольклора. Сам он твердо верил, что может связаться с марсианами, завершить незаконченную Эйнштейном теорию единого поля, расколоть Землю пополам, подобно яблоку, и создать смертельный луч, способный уничтожить 10 000 самолетов с расстояния 250 миль. (ФБР так серьезно относилось к утверждениям по поводу луча смерти, что после смерти Тесла наложило руку на большую часть его записок и лабораторного оборудования; кое-что и сегодня еще лежит в секретном хранилище.)
В 1931 г., находясь на пике славы и известности, Тесла попал на обложку журнала Time. Он регулярно поражал публику, создавая на глазах изумленной аудитории гигантские молнии, несущие в себе миллионы вольт электрической энергии. Его погубило небрежное отношение к финансовым и юридическим вопросам. Столкнувшись с армадой юристов, представлявших только-только возникшие тогда фирмы, превратившиеся сегодня в энергетические гиганты, Тесла потерял контроль над важнейшими своими патентами. У него появились симптомы того, что медики сегодня называют обсессивно-компульсивным расстройством; его «пунктиком» стало число 3. Позже развилась паранойя; он жил в бедности в отеле New Yorker, бегал от кредиторов и боялся, что враги отравят его. Он умер в 1943 г. в полной нищете в возрасте 86 лет.
33
Причина в том, что если взять теорию гравитации Эйнштейна и ввести в нее квантовые поправки, то эти поправки окажутся не маленькими, а бесконечными. За долгие годы физики выработали множество ухищрений, позволяющих избавиться от бесконечных слагаемых в уравнениях, но с квантовой теорией гравитации все эти методы не работают. А вот в теории струн бесконечные поправки вообще пропадают, и причин тому несколько. Во-первых, в теории струн есть особый вид симметрии, известный как суперсимметрия, благодаря которому многие бесконечные слагаемые уходят. Кроме того, в теории струн есть ограничение — длина струны, — тоже помогающее бороться с бесконечностями.
Вообще, бесконечность в теории гравитации восходит еще к классической теории. Закон обратных квадратов Ньютона гласит, что при стремлении расстояния между объектами к нулю сила притяжения между ними становится бесконечной. Эта бесконечность, очевидная даже в теории Ньютона, переходит и в квантовую теорию. И только в теории струн есть ограничение — длина струны, или планковская длина, которая позволяет нам бороться с расходимостью.


Вернуться к началу
 Профиль  
 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 48 ]  На страницу Пред.  1, 2, 3, 4

Часовой пояс: UTC + 3 часа


Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 2


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Перейти:  
cron
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group
Русская поддержка phpBB


Подписаться на рассылку
"Вознесение"
|
Рассылки Subscribe.Ru
Галактика
Подписаться письмом